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Gaël Buldgen 1,∗, Jérôme Bétrisey 1, Ian W. Roxburgh 2,3, Sergei V.
Vorontsov 2,4 and Daniel R. Reese 5
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Sauverny, Switzerland
2 Astronomy Unit, Queen Mary University of London, Mile End Road, London, E1
4NS, UK
3 School of Physics and Astronomy, University of Birmingham, Edgbaston,
Birmingham, B15 2TT, UK
4 Institute of Physics of the Earth, B. Gruzinskaya 10, Moscow 123995, Russia
5 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université,
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ABSTRACT

The advent of space-based photometry missions in the early 21st century enabled the
application to asteroseismic data of advanced inference techniques until then restricted to
the field of helioseismology. The high quality of the observations, the discovery of mixed modes
in evolved solar-like oscillators and the need for an improvement in the determination of stellar
fundamental parameters such as mass, radius and age led to the development of sophisticated
modelling tools, amongst which seismic inversions play a key role. In this review, we will discuss
the existing inversion techniques for the internal structure of distant stars adapted from helio-
to asteroseismology. We will present results obtained for various Kepler targets, their coupling
to other existing modelling techniques as well as the limitations of seismic analyses and the
perspectives for future developments of these approaches in the context of the current TESS and
the future PLATO mission, as well as the exploitation of the mixed modes observed in post-main
sequence solar-like oscillators, for which variational formulations might not provide sufficient
accuracy.
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1 INTRODUCTION
In the last two decades, asteroseismology has established itself as the golden path to study the internal
structure of distant stars. Amongst these, solar-like oscillators have held a special place due to the number
of them detected at various masses, chemical composition and evolutionary stages. This revolution was
made possible by the recent space-based photometry missions CoRoT (Baglin et al., 2009), Kepler (Borucki
et al., 2010) and TESS (Ricker et al., 2015). In the near future, the PLATO mission (Rauer et al., 2014)
will further extend the dataset, and proposals for future missions have also been laid out, testifying to the
scientific success of these missions (e.g. Miglio et al., 2021).
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In addition to providing numerous targets to work on, space-based photometry missions also led to
a drastic change in data quality compared to previous ground-based observations. While ground-based
telescope networks (see Grundahl et al., 2006, for the SONG network) are still very important and can
provide high quality data for some close targets (e.g. Bouchy and Carrier, 2001; Martić et al., 2004; Bedding
et al., 2004; Kjeldsen et al., 2005; Grundahl et al., 2006), they are no match for nanohertz precision on the
observed frequencies of some of the best Kepler targets and the large number of stars that can be observed
simultaneously by photometric surveys.

This drastic change motivated the use of advanced seismic analyses techniques that were before restricted
to the field of helioseismology, where the proximity of the Sun allows the detection of thousands of
oscillation modes. Seismic inferences became routinely used and the determination of fundamental
parameters of stars for the purposes of fields such as exoplanetology and Galactic archaeology drove the
development of dedicated numerical tools. Large grids of stellar models were also computed for such
purposes and coupled to automated seismic modelling pipelines (e.g. Mathur et al., 2012; Gruberbauer et al.,
2013; Metcalfe et al., 2015; Bellinger et al., 2016; Rendle et al., 2019; Bazot, 2020; Aguirre Børsen-Koch
et al., 2022) .

Inference problems are widespread in physics, from the calibration of instrumental responses to the
radiative transfer problem in the Earth’s atmosphere. They correspond to a specific class of mathematical
problems called ill-posed problems, for which specific dedicated techniques have to be developed (see
Tarantola, 2005; Pijpers, 2006, for example). These methods require having an appropriate formalism and
regularization of the problem, in line with the known or assumed properties of the physical problem under
study.

The inversion techniques used in asteroseismology are no exception to this rule. They most often derive
from methods developed for helioseismology and for this reason have mostly been applied to solar-like
oscillators, for which the underlying hypotheses of the inversion remain valid. It is worth mentioning that
most seismic inversion techniques used in helio- and asteroseismology have actually been first applied to
inferring the internal rotation of slowly rotating stars, including our Sun (see Thompson et al., 2003, and
references therein). Thanks to space-based photometry data, inferences of internal rotation have been made
in various cases, from solar-like main-sequence stars (see e.g. Lund et al., 2014; Benomar et al., 2015;
Schunker et al., 2016c,a; Benomar et al., 2018; Bazot et al., 2019), to more massive oscillators (Kurtz et al.,
2014; Saio et al., 2015; Hatta et al., 2019, 2022) and towards later evolutionary stages (see e.g. Deheuvels
et al., 2014, 2015; Di Mauro, 2016; Di Mauro et al., 2018; Deheuvels et al., 2020; Fellay et al., 2021) with
great successes.

In this short review, we will focus on seismic inversions of the internal structure of stars. We will start
by discussing the goals of seismic inversions in Sect. 2. In Sect. 3, we will discuss inversion techniques
relying on the calibration of evolutionary models and mention examples of static approaches applied to
specific cases in stellar evolution. In Sect. 4, we introduce the variational formalism applied in linear
inversions, that will be discussed in Sect. 5 for both localized and indicator inversions. Finally, we will
discuss non-linear inversions from the use of inner phaseshifts of the oscillations in Sect. 6 and conclude in
Sect. 7.
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2 GOALS OF SEISMIC INVERSION TECHNIQUES AND UNDERLYING
HYPOTHESES

The goal of seismic inversion techniques is to provide a model of the internal structure that takes into
account all the available observational constraints. This procedure can take various forms that we will
discuss in the following sections.

From a mathematical point of view, the inversion procedure consists in solving the system of differential
equations describing the stellar structure while taking all the available observational constraints into account.
In practice, this already implies assuming a few hypotheses regarding the equilibrium state of the star and
the physical processes considered in the description of its internal structure.

The cases on which we focus will be slowly rotating solar-like stars without strong magnetic fields or
being subject to tidal interactions capable of breaking the spherical symmetry. While these hypotheses
might appear strong, they are in good agreement with observations and can be used for a wide range of
targets. Hydrostatic and thermal equilibrium are also considered and the equilibrium equations of stellar
structure are written in eulerian form as follows

∂m

∂r
= 4πr2ρ, (1)

∂P

∂r
=
−Gmρ
r2

, (2)

∂l

∂r
= 4πr2ε, (3)

∂T

∂r
=
−GmTρ
r2P

∇, (4)

with r the radial position in the spherically symmetric model, m the mass of the sphere of radius r, ρ
the local density, T the local temperature, l the local luminosity, P the local pressure,∇ = d lnT

d lnP the
temperature gradient, and ε the local rate of energy generation. In addition to this system, the equation of
state of the stellar material must be defined, namely the relation

P = P (ρ, T,Xj), (5)

with Xj the chemical mixture of the stellar plasma. Alongside the determination of the internal structure,
the inversion may also provide precise values of the fundamental stellar parameters such as mass, radius
and age (when computing evolutionary models). In some specific cases, the full structure equations are
solved in a static way, for example when the evolutionary path is unclear or difficult to compute with
evolutionary models as for B-type subdwarf stars or white dwarfs for example.

In other cases, the seismic inversion does not aim at determining the full structure. Its goal is rather to
determine both the global parameters of the star such as mass and radius, the density profile inside the star,
ρ(r) and the first adiabatic exponent profile Γ1(r) = ∂ ln ρ

∂ lnP |S .

In practice however, Γ1 deviates only very little from 5/3 in the stellar interior, apart from the ionization
regions in the upper convective envelope. It is thus assumed constant or fixed at the value of a given
reference structure used for the inversion. This situation is very different from helioseismology, where the
quality of the data allows us to distinguish between various equations of state for the solar material based
on the inversion of the Γ1 profile in the convective envelope (See e.g. Elliott, 1996; Elliott and Kosovichev,
1998; Vorontsov et al., 2013, and references therein).
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Due to the lower quality of asteroseismic data and the absence of high-degree modes allowing to determine
localized corrections in the upper layers, the equation of state of the stellar material will not be considered
an issue1. This point will be further discussed in the following sections when presenting the variational
formalism used in linear inversion techniques.

In this context, the application of seismic inversions serve as a complement to evolutionary modelling.
The inverted quantities can then be compared with those of evolutionary models and potentially constrain
missing physical processes. Consequently, seismic inversions constitute an essential approach to improve
the accuracy of stellar models and the determination of fundamental stellar parameters such as mass, radius
and age.

3 STATIC AND EVOLUTIONARY MODELLING
The inference of the internal structure of a star can take various forms. It may for example result from the
adjustment of an evolutionary sequence to an observed target. For stellar systems such as binaries or clusters,
simultaneous fitting of all members can even be done so that the modelling is more constraining, sometimes
assuming the same chemical composition and age for all members. We hereby provide for the interested
reader a few additional references on seismic modelling and asteroseismology of solar-like oscillators
Roxburgh (2002); Christensen-Dalsgaard and Houdek (2010); Guzik (2011); Goupil et al. (2011); Chaplin
and Miglio (2013); Di Mauro (2016) as well as seismic studies of stellar clusters (Handberg et al., 2017;
McKeever et al., 2019) and binaries (see e.g. Bazot et al., 2016; Bazot, 2020; Salmon et al., 2021). In
other cases, an inversion can refer to the determination of the internal structure of a given star in a static
way, departing from hypotheses regarding its evolutionary history. Such static approaches will sometimes
even aim at determining only a key few internal quantities from dedicated formalisms while avoiding
simplifying assumptions regarding the internal structure of the star.

Such static approaches constitute powerful tools to further refine stellar evolutionary models and are
often referred as “seismic inversion”, while the use of evolutionary models is referred to as “forward
modelling”. This division is only present in the field of asteroseismology and can be misleading when
studying inversion techniques used in other fields (See Tarantola, 2005; Pijpers, 2006, for example).

In what follows, we will briefly describe evolutionary and static inferences as applied to asteroseismic
data.

3.1 Inferences from evolutionary models
The most common approach to determine the internal structure of a star is by coupling an optimization

procedure to a stellar evolution code. While this is commonly referred as “forward modelling” in the
seismic modelling community, it actually consists in a type of inversion in the mathematical sense of the
word.

In this type of inference, the structure of the star is coupled to an assumed evolutionary history. Namely, the
evolution of the chemical abundances of the star is simulated by considering the effects of nuclear reactions
and transport processes such as microscopic diffusion, macroscopic transport by rotation, convection,
accretion and mass-loss.

The main advantage of using evolutionary models resides in the possibility to test the evolutionary
scenarios used to model stars and check the validity of the theory of stellar evolution. Moreover, in view of
the recent needs of neighbouring fields such as exoplanetology and Galactic archaeology for fundamental

1 Constraints on the convective envelope can still be inferred from so-called “acoustic glitches”, that can provide estimates of the helium abundance or the
position of a sharp transition in temperature gradients at the bottom of the convective zone.
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stellar parameters such as masses, radii and ages, the use of optimization techniques on large grids of
stellar models has now become routine, especially for main-sequence solar-like oscillators. Such modelling
approaches have been applied to a wide range of targets from missions such as CoRoT, Kepler, and TESS,
as well as closer objects such as Alpha Centauri A&B.

In this context, numerous optimization techniques have been adapted to determine optimal stellar
parameters. For example, local minimization techniques such as Levenberg-Marquardt algorithms have
been applied in the past (e.g. Frandsen et al., 2002; Teixeira et al., 2003; Miglio and Montalbán, 2005).
However, due to the problem of local minima, especially with high-quality Kepler data, and the treatment
of the uncertainties in such methods, global minimization techniques have been favoured such as Genetic
algorithms, Markov Chain Monte Carlo approaches, or even Machine Learning software. Such methods
have been applied to either precomputed grids of stellar evolutionary models or by computing the models
on the fly to avoid relying on interpolation that could lead to a loss of accuracy. A few examples of such
techniques and their associated results can be found in Mathur et al. (2012); Gruberbauer et al. (2013);
Metcalfe et al. (2015); Bellinger et al. (2016); Rendle et al. (2019); Bazot (2020); Aguirre Børsen-Koch
et al. (2022) .

A major drawback of the grid-based approach stems from the limitation to the physical ingredients of
the precomputed models. Therefore, any change of abundance scale, opacity table, equation of state, or
prescription for the mixing of chemical elements requires the whole grid to be recomputed, which can be
time consuming. However, computing the models on the fly is not a viable option for sampling algorithms
such as MCMC techniques that require large numbers of walkers to provide a proper distribution of the
optimal parameters.

More recently, a hybrid approach was presented (Buldgen et al., 2019a; Bétrisey et al., 2022), where
a combination of local and global minimization techniques are used. In the era of high-quality Kepler
data, the uncertainties derived from solely propagating the observational error bars are small enough to
sometimes be comparable, or smaller, than the changes in the optimal solution observed when varying
the physical ingredients of the models. In this context, local minimization techniques offer the flexibility
to estimate the change in the solution from a change of the physics, using the optimal solution obtained
from an MCMC sampling of the parameter space. A combination of both is probably a good approach to
test the impact of known physical processes on stellar fundamental parameters, while departing from an
evolutionary history using static inferences might be optimal to study the presence of unknown physical
processes. A schematic illustration of the interplay between the different modelling strategies is provided
in Fig. 1.

Besides the algorithm used to determine the optimal model, the way seismic constraints are combined is
also extremely important. One major issue of solar-like oscillations is their sensitivity to surface effects. To
mitigate this issue, a first approach is to develop so-called empirical “surface corrections”, that are based
on solar frequencies (See e.g. Rabello-Soares et al., 1999; Kjeldsen et al., 2008; Ball and Gizon, 2014)
and/or on 3D averaged atmospheric models for which adiabatic oscillations are computed (e.g. Sonoi et al.,
2015; Ball et al., 2016). More recently, such analyses have been generalized to dipolar mixed modes by
Ong and Basu (2020); Ong et al. (2021).

Given the amplitude of the surface effect, a direct fitting of the individual frequencies will be extremely
sensitive to the empirical corrections. This is illustrated in the left panel of Fig. 2, showing the individual
frequencies of Kepler 93 and those of the associated optimal stellar model fitting them using the Ball and
Gizon (2014) empirical surface correction. The actual amplitude of the surface correction is much larger
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Global minimization using a grid of 
models and interpolation
+ good exploration of parameter space

Local minimization with on the fly 
evolutionary computations

- potential local minima

+ estimate systematics from physics

Static analyses
+ independent of models
- potential degeneracies

Provides initial 
conditions

Provides reference 
structure

Hints at physics 
revision

- fixed physical ingredients
- interpolation errors

Evolutionary modelling

Figure 1. Schematic representation of combinations of evolutionary and static inferences used in stellar
modelling. Each box includes the strenghts (green) and weaknesses (red) of the various methods and the
arrows represent their relations.

than the uncertainties on the frequencies themselves, which may lead to strong biases, especially at high
frequencies and can result in significant biases in the inferred stellar mass (Jørgensen et al., 2020; Bétrisey
et al., 2022).

Another way to circumvent surface effects is to use combinations of frequencies, such as the so-called
frequency separation ratios of the large and small frequency separations defined in Roxburgh and Vorontsov
(2003b)

r01(n) =
δ01(n)

∆ν1(n)
, (6)

r10(n) =
δ10(n)

∆ν0(n+ 1)
, (7)

r02(n) =
δ02(n)

∆ν1(n)
, (8)

with ∆νl(n) the large separations, δij(n) the small separations, and n the radial order of the mode:

∆νl(n) = νn,l − νn−1,l, (9)

δ01(n) =
1

8
(νn−1,0 − 4νn−1,1 + 6νn,0 − 4νn,1 + νn+1,0) , (10)

δ10(n) = −1

8
(νn−1,1 − 4νn,0 + 6νn,1 − 4νn+1,0 + νn+1,1) , (11)

δ02(n) = νn,0 − νn−1,2. (12)
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Figure 2. Left: Illustration of the effects of surface corrections for the Echelle diagram of Kepler 93,
showing the significant effect of the parametric corrections on high frequencies. Right: Frequency separation
ratios for the data of the left panel, showing their low sensitivity to the empirical surface corrections as the
blue and reen symbols are essentially the same.

As shown in the right panel of Fig. 2, these ratios are largely independent of the surface layers and
thus much more efficient at constraining the internal structure of an observed target. Other techniques of
surface-independent model fitting have been developed and presented in Roxburgh (2015). More recently,
Farnir et al. (2019) also developed a comprehensive approach to decompose the spectrum of solar-like
oscillations in seismic indicators uncorrelated to each other, taking into account both the smooth and the
glitch component of the oscillation spectrum.

In general, non-seismic constraints will also be considered when carrying out evolutionary modelling,
such as the stellar luminosity, the effective temperature, the surface metallicity or the photospheric radius
determined from interferometry (whenever available), or the mass if studying a spectroscopic binary system.
While not always available, such non-seismic constraints, especially if determined with high precision,
can prove extremely useful in lifting degeneracies between various solutions provided by pure seismic
modelling.

3.2 Inferences from static models
Static models are depictions of the internal structure of stars without considering their evolutionary

history. In a strict sense, the observed oscillation frequencies carry information only on the current state
of the star, but there can be multiple paths leading to the current observed properties. Static models are
particularly useful to study stars in an evolutionary stage difficult to compute numerically, or for which the
evolutionary path is unclear.

Various techniques have been applied in the past to study the internal structure of SdB stars and white
dwarfs (Charpinet et al., 2008; Van Grootel et al., 2010; Giammichele et al., 2018; Charpinet et al.,
2019; Fontaine et al., 2019), providing constraints on the equation of state of dense stellar matter and the
properties of semi-convective mixing in advanced evolutionary phases.

Static seismic models have also been computed for the solar case (See e.g. Basu and Thompson, 1996;
Takata and Shibahashi, 1998; Shibahashi et al., 1999; Shibahashi and Tamura, 2006; Buldgen et al.,
2020) where the presence of high degree modes allows us to carry out a full scan via iterative methods.
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Some non-standard static models have also been computed by Hatta et al. (2021) for KIC 11145123, a
young γ-Doradus δ-Scuti hydrid pulsator. As such, static modelling may also prove useful for modelling
non-standard evolutionary products such as results of mergers, stripped cores, ... for which pulsational
properties may significantly differ from what their standard evolutionary counterparts would predict (See
e.g. Deheuvels et al., 2022).

4 VARIATIONAL EQUATIONS
The most commonly used inversion techniques rely on the so-called variational principle of adiabatic stellar
oscillations (See Chandrasekhar, 1964; Clement, 1964; Chandrasekhar and Lebovitz, 1964; Lynden-Bell
and Ostriker, 1967), that can be derived from the functional analysis of the adiabatic oscillation equations.
It essentially states that at first order, perturbation of the adiabatic eigenfrequencies of gaseous spheres will
be related to perturbations of the oscillation operator and link the seismic observables to interior quantities.
In other words, small perturbations will follow, to first order, the following equation

δνn,`

νn,`
=
< ξn,`, δL(ξn,`) >

In,`
, (13)

with νn,` the frequency of the oscillation mode, ξn,` its eigenfunction, In,` the mode inertia (see e.g.
Unno et al., 1989, for a general description of non-radial stellar oscillations) and δL the perturbed operator
of adiabatic oscillations. The notation < . > denotes the scalar product over the functional space of the
solutions of the adiabatic oscillation equations. It is defined as

< a,b > =

∫
V
a · bρdV, (14)

with V the volume of the sphere and ρ the local value of the density in the sphere.

Examples of small perturbations in the stellar case include the effects of slow rotation, or minor
mismatches between the internal structure of the model and the observed star. The former, that serves as
initial condition for the inversion, will often be called “reference model”, while the observed star or the
target model will often be refereed to as the “target” of the inversion procedure.

It is worth mentioning that while the variational principle is valid for “small perturbations” of an Hermitian
operator (as is the general operator describing the full 4th order system of adiabatic stellar oscillations), the
domain of validity of the linear approximation is unclear, and likely depends on the oscillation modes and
the quality of the reference model. The variational expressions have for example been generalized in the
case of mixed oscillation modes by Ong and Basu (2020) and Ong et al. (2021).

For the purpose of structure inversions, the equations are reworked to provide a formally simple expression
allowing us to derive corrections to the internal structure of a given model (Dziembowski et al., 1990). This
expression is

δνn,`

νn,`
=

∫ R

0
Kn,`
s1,s2

δs1

s1
dr +

∫ R

0
Kn,`
s2,s1

δs2

s2
dr +O(δ2), (15)
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Figure 3. Structural kernels for various structural pairs and for low degree oscillations modes for a
representative model of 16CygA from Buldgen et al. (2022). Each panel illustrates a different variable that
can be used for variational inversions of the structure of a star as well as the degeneracy in the shape of the
kernels for low degree modes.

where s1 and s2 are structural variables such as density, pressure, sound speed, ... Kn,`
sj ,sk the structural

kernel related to variable sj in the (sj , sk) pair which depends on the structure of the model and the
eigenfunction of the oscillation mode. The notation δ defines a difference between the reference model
and the observed target of a variable such as the frequency, the density as a function of radius, ... (See
Dziembowski et al., 1990, for the associated developments). In Eq. 15, the last term denotes that the
formalism is valid to first order, and in some cases, higher order terms can become non-negligible,
making the first order approximation inappropriate. Various pairs of structural kernels are illustrated in
Fig. 3,namely for the density, squared adiabatic sound speed, squared isothermal sound speed and Ledoux
discriminant. The similarity between the kernels illustrates well the difficulties of asteroseismic inversions
who will only have a few available modes to carry out the inversions.

The classical variational expressions are related to the adiabatic sound speed and density profiles. However,
these expressions can be easily generalized to any physical quantity appearing in the adiabatic oscillation
equations (Elliott, 1996; Basu and Christensen-Dalsgaard, 1997; Kosovichev, 2011; Buldgen et al., 2017b).
In addition, assuming a linearized form of the equation of state can also be used to determine “secondary”
variables such as temperature or in principle, chemical abundances. In such cases the Γ1 perturbations are
rewritten as

δΓ1

Γ1
=
∂ ln Γ1

∂ lnP

∣∣∣
ρ,Y,Z

δP

P
+
∂ ln Γ1

∂ ln ρ

∣∣∣
P,Y,Z

δρ

ρ
+
∂ ln Γ1

∂Y

∣∣∣
P,ρ,Z

δY +
∂ ln Γ1

∂Z

∣∣∣
P,ρ,Y

δZ, (16)

with P , the local pressure, ρ, the local density, Y , the helium mass fraction and Z, the heavy element mass
fraction. Other thermodynamic variables can be used in combination with the appropriate Γ1 derivatives.
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In practice however, this expression is not used in asteroseismology to carry out inversions of the chemical
composition, but rather to naturally damp the contribution of the second integral in the inversion thanks to
the low amplitude of the Γ1 derivatives with respect to Y . Such “tricks” lead to more stable inversions for
which the variational equation almost reduces to an integral expression with one structural variable instead
of two. We will come back to this point in Sect. 5.

Lagrangian perturbations can also be considered in Equation 15. In this case, the perturbations of the
structural variables will be considered at fixed mass instead of fixed radius (Christensen-Dalsgaard and
Thompson, 1997). Instead of using individual frequency differences, it is also possible to express the
variational equations for frequency separation ratios, as was shown in Otı́ Floranes et al. (2005) and applied
in Bétrisey and Buldgen (2022).

One major weakness of the variational expressions using individual frequencies is their strong sensitivity
to surface effects. They indeed rely on the adiabatic approximation, which is not valid in the upper layers
where the thermal and dynamical timescales are of the same order of magnitude. Moreover, adiabatic
oscillation codes often use simplified boundary conditions and the poor modelling of the upper convective
layers by the mixing-length theory will lead to inaccuracies of the oscillation frequencies at a significant
level with respect to the observational errors. Such sensitivity can however be damped when using frequency
separation ratios for the inversion.

Indeed, as they directly use frequency differences, the variational equations will suffer to some extent
from the same caveats as directly using the individual frequencies as constraints in evolutionary or static
modelling. This implies that the variational expression 15 will have to be supplemented by a surface
correction term that often takes a polynomial form

F(ν) =
∑
k

ck(ν)νk, (17)

with ν a given frequency and ck the surface correction coefficients associated with the power k of the
frequency. Existing surface corrections include the classical polynomial approach of degree 7 applied in
helioseismology(Rabello-Soares et al., 1999), the two-terms Ball and Gizon (2014) correction and the
Sonoi et al. (2015) formula that can also be linearized, or applied to the frequencies beforehand using their
empirical relation of the surface correction with effective temperature and surface gravity.

It is therefore important to keep in mind that the validity of the variational relations is limited. It can for
example be measured using error functions such as

En,` =
Λn,`LHS − Λn,`RHS

Λn,`LHS

, (18)

with Λn,`LHS the relative frequency difference and Λn,`RHS the right-hand side of Eq. 15.

As illustrated in Fig. 4, the accuracy of the variational inversion will vary depending on the oscillation
modes considered as well as the structural variables used. Such considerations might be very important
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Figure 4. Illustration of the verification of the integral relation between relative frequency differences
and relative structure differences for solar models including various transports of the mixing of chemicals,
using Eq. 18, using models from Buldgen et al. (2017b) and various structural pairs, namely (ρ, c2), (ρ,Γ1),
(u,Γ1) and (A,Γ1).

when choosing the most adapted variable pair for a given target and set of observed frequencies before
carrying out an inversion of the structure.

5 LINEAR INVERSION TECHNIQUES - THE SOLA METHOD
The variational equations provide the basis for the use of linear inversion techniques in helioseismology.
Namely, under the hypothesis of the validity of the linear integral relation 15, these equations can be solved
to provide corrections to structural variables. The linear approaches provide one step of correction, and
are not iterated, unlike the non-linear methods we present in Sec. 6. As mentioned above, the variational
equations can be rewritten for a wide range of physical quantities, offering some degree of freedom
regarding the target of the inversion.

However, the situation is in practice far more complex. Linear inversion techniques such as the OLA
(Backus and Gilbert, 1970), SOLA (Pijpers and Thompson, 1994) or RLS methods (Tikhonov, 1963) have
been adapted for inverting helioseismic data (see Christensen-Dalsgaard et al., 1990; Sekii, 1997, for a
comparison between OLA and RLS) and (see Reese, 2018, for a review). Inversions of stellar structure
using asteroseismic data have so far been limited to the use of the SOLA method2, which is the one we will
describe here.

The philosophy behind the SOLA inversion is to compute linear combinations of the relative frequency
differences based the following cost function

2 We note however that instances of RLS inversions of the internal rotation of distant stars can be found in Deheuvels et al. (2014); Schunker et al. (2016b)
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P(ci) =

∫ R

0
[Kavg(r)− T (r)] dr + β

∫ R

0
K2

cross(r)dr

+ λN + tan θ

∑N
i (ciσi)

2

< σ2 >
+

N∑
i

ci

L∑
k

akψk(νi), (19)

with T the target function of the inversion, λ a Lagrange multiplier,N an additional regularization term (as
will be discussed later), ci the inversion coefficients, θ and β the trade-off parameters, σi the uncertainties
of the relative frequency differences, < σ2 >= 1

N

∑N
i=1 σ

2
i and N the number of observed frequencies.

The term
∑L

k akψk(νi) is a polynomial expression for the surface correction defined in Eq. 17, with L the
number of surface terms in the polynomial definition. In addition to these quantities, we define in Eq. 19
two terms, Kavg and Kcross, the averaging and cross-term kernels, defined from the recombination of the
structural kernels with the inversion coefficients. They will have the form

Kavg =
N∑
i

ciK
i
s1,s2 , (20)

Kcross =
N∑
i

ciK
i
s2,s1 , (21)

if the target function of the inversion is related to the variable s1 in the (s1, s2) structural pair.

In other words, the SOLA method is based on a trade-off between precision and accuracy. The goal
is to compute the best fit to the target function of the inversion while avoiding to amplify too much the
observational uncertainties. Looking at Eq. 20, it is straightforward to see that the number of observed
frequencies will play a crucial role for the accuracy of the method. The more frequencies are observed, the
more structural kernels are available for recombination, and the more accurate the inversion will be.

The situation in asteroseismology is however very far from that of helioseismology. Since the surface of
the star is not resolved, geometric cancellation forbids the detection of solar-like oscillations of angular
degree higher than 3. This has important consequences for the capabilities of linear inversions, as the
datasets for the best Kepler targets count at most ≈ 50 to ≈ 60 individual frequencies with low degrees. In
such conditions, full scans of the internal structure, as carried out for the Sun, are not achievable.

Most of the time, the linear inversion of the structure will be limited by the number of frequencies and the
validity of the linear formalism. An important difference between asteroseismic and helioseismic inversions
is that the fundamental parameters, mass, radius and age of the star under study are not known. The solar
case thus consists in an ideal environment where the bounds of the integrals in Eq. 15 are known, and
where the knowledge of the age of the Sun provides a degree of control on the computed models, ensuring
the validity of the linear formalism.

This will not be the case in asteroseismology, implying that a workaround has to be found, and some care
has to be taken when interpreting the results of linear inversions. In practice, one can include an additional
term in the cost function of the inversion related to the minimization of the mean density, as suggested
by Roxburgh et al. (1998). In such condtions, one can consider that using dimensional and dimensionless
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Figure 5. Differences between the dimensional ((u), dashed line) and dimensionless (ũ, plain line) squared
isothermal sound speed for models of 16CygA from Farnir et al. (2020). The differences are those computed
in Buldgen et al. (2022), Fig. A.13 and are linked to models of 16CygA showing differences in their mean
density values between 1 (orange and green lines) and 2% (red lines).

frequencies, denoted ν and ν̃ would be equivalent and that

νobs − νref

νref
=
ν̃obs − ν̃ref

ν̃ref
, (22)

if the mean density is perfectly fitted. This implies that the actual corrections derived by the inversion
are for the dimensionless variable and not its dimensional counterpart. Another pragmatic approach to
take this scaling effect into account is to carry out inversion for ensembles of models with the same
mean density, determined for example from mean density inversions (See Sect. 5.3). This “scaling” effect
can become very important when comparing actual differences between models. It also illustrates some
degree of degeneracy in seismic inferences, and shows the importance of independent radii estimates from
interferometric measurements, or combination of parallaxes and spectroscopic measurements. In practice,
any high-quality non-seismic constraints will prove very useful to seismic modelling, and also explains why
binary systems are still key testbeds of stellar physics, even in the era of space-based photometry missions
(Metcalfe et al., 2015; Appourchaux et al., 2015; Bazot et al., 2016; Farnir et al., 2020; Salmon et al., 2021).
Figure 5 illustrates such differences for two models of the Kepler target 16CygA from Farnir et al. (2020).
The behaviour of the dimensional and dimensionless relative differences in squared isothermal sound speed
can be quite different, showing the importance of understanding what variable is actually constrained by
the inversion.

Another limitation of linear inversions is the range of validity of the linear formalism. In practice,
calibrations using only non-seismic parameters will not be sufficient to ensure the applicability of the
variational formalism to the inverse problem. Thus, as already noted by Thompson and Christensen-
Dalsgaard (2002), a preliminary form of seismic modelling must be carried out before the inversion is
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performed, which implies that seismic data is already used beforehand. From a modelling point of view,
this means that the inversion step is not completely independent of the preliminary modelling procedure,
and that inversions relying on the variational equations can often be biased. This problem can become
more substantial if the amplitification of the observational uncertainties is small, meaning that the inversion
appears artificially precise. In this context, providing a set of reference models large enough is very
important to ensure that the precision of the inversion is correctly assessed from the point of view of
model-dependencies, non-linearities, and impact of empirical surface corrections.

5.1 Dealing with surface effects
The additional surface correction term in Eq. 17 leads to various complications in asteroseismic inversions.

The additional term in Eq. 19 can often have a very significant impact on the inversion results, as it leads
to a less favourable trade-off for a method already limited by the low number of observed modes to
fit the target function. Determining the actual impact of the surface corrections on inversion results is
particularly important, as in some cases they will lead to a larger variation of the inverted result than the
uncertainties derived from the SOLA method. This is the case for mean density inversions, which thus
require a more careful analysis. Indeed, the precision on the determined mean density will have an impact
on the determined stellar mass using evolutionary modelling or the determined planetary mass from a radial
velocity curve.

The classical polynomial fit used for helioseismic inversions is not applicable in the context of
asteroseismology. It was usually advised to consider a polynomial of order up to 7 to fit the “surface term”
(Rabello-Soares et al., 1999), which is not possible with asteroseismic data. Reese et al. (2012) initially
attempted to limit the correction to the first order, but tests in hare and hounds exercises showed that this
was even less efficient than not considering any correction (Reese et al., 2016).

With the advent of the new empirical corrections of Ball and Gizon (2014) and Sonoi et al. (2015), the
surface term could be reduced to two additional terms. In such conditions, the surface term can sometimes
be directly included in the fitting of the SOLA cost-function with limited impact on the quality of the
fit of the target function of the inversion regarding accuracy, but will actually impact the amplitude of
the inversion coefficients and thus the precision of the inversion. However, with very limited datasets, or
for some more unstable inversions, the addition of two terms in the cost-function can lead to low quality
reproduction of the target.

In such conditions, surface corrections can also be applied following the empirical formula of Sonoi
et al. (2015) as a function effective temperature and surface gravity before carrying the inversion, using
the corrected frequencies as the observed ones. An analysis of the importance of surface corrections for
mean density inversions on red giant stars using averaged 3D atmospheric models and non-adiabatic
frequency computations has been carried out in Buldgen et al. (2019b). They showed that applying the
surface corrections beforehand could be more efficient than including it in the cost-function, as it did not
affect the fit of the target function. A similar observation was made for Kepler 93 by Bétrisey et al. (2022).
However, further tests and more thorough analyses have to be carried out for other indicators and datasets
before concluding on the best approach to take into account surface effects. In addition, such studies do not
necessarily indicate that the surface corrections are ultimately accurate, and an efficient workaround is then
to avoid the surface effect dependency in the inversion altogether, as will be discussed in Sect. 6.

5.2 Inversions of localized corrections
The original SOLA inversions have been designed for determining local average corrections of the

solar rotation profile (Pijpers and Thompson, 1994) from the variational expressions applied in the slowly
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rotating case. The same approach can be directly applied to structural inversions, with the only major
change being that a cross-term contribution appears due to Eq. 15 including two integrals compared with
the single integral relation of rotation perturbations.

Inversions of localized averages have been extensively performed in helioseismology, as well as
comparisons with the RLS technique and applications to various structural pairs. The application of
SOLA inversions to asteroseismic data was foreseen quite early, with studies on artificial data already
carried out in the 1990s and early 2000s (Gough and Kosovichev, 1993b,a; Roxburgh et al., 1998; Basu
et al., 2002; Takata and Montgomery, 2002). In most cases, the expected quality of the dataset was actually
higher than what was actually brought by the space-based photometry missions, with some artificial
datasets going as high as 100 observed frequencies, which unfortunately has not been achieved for any
solar-like oscillator observed by Kepler.

In the case of localized inversions, the target function of the inversion usually is a Gaussian-like function
of the form

T = αr exp

(
−
(
r − y

∆
+

∆

2r0

)2
)
, (23)

with α a normalisation constant, y the center of the Gaussian target function and ∆ = ∆Ac(y)
cA

is linked to
the width of the Gaussian, ∆A being a free parameter, and c(y) and cA the adiabatic sound speed at the
maximum of the kernel and at a radius of 0.2R, respectively.

The regularisation term N of Eq. 19 is then a unimodularity constraint on the averaging kernel of the
form ∫ R

0
Kavgdr = 1, (24)

to avoid high amplitudes of the inversion coefficients that can make the procedure unstable.

Applications of the SOLA method in its original form to actual asteroseismic data can be found as early
as 2004 (di Mauro, 2004). More recent applications aiming at determining localized corrections to Kepler
targets can be found in (Bellinger et al., 2017, 2019; Kosovichev and Kitiashvili, 2020; Bellinger et al.,
2021; Buldgen et al., 2022). Such applications have been limited to the best Kepler targets, such as the
16Cyg binary system. Even in such cases, localised kernels can only be obtained in the deep layers, as a
result of the availability of only low degree modes. An illustration of Gaussian averaging kernels obtained
for 16CygA is illustrated in the right panel of Fig. 6.

As shown in the left panel of Fig 6, such inversions have confirmed the accuracy of the reference
evolutionary models for both stars determined from asteroseismic modelling using the method of Farnir
et al. (2020). The fact that the SOLA inversion cannot pinpoint differences between models of solar twins
is not really a surprise. Indeed, the effects of varying the transport of chemicals by inhibiting settling of
heavy elements to mimick turbulence at the base of the convective envelope, changing the radiative opacity
tables, or changing the reference solar abundances is rather small for a given set of parameters such as
mass, radius and age. From the analysis of solar models, the differences seen are of the order of 1% at the
base of convective envelope and reduce to 0.2% in the deep radiative layers. In these conditions, linear
asteroseismic inversions, showing uncertainties of a few percent, might not be able to pintpoint such small
differences in structure if the fundamental parameters of a star are well constrained.
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Figure 6. Left: relative differences in dimensionless squared isothermal sound speed for 16CygA as a
function of normalized radius. Each colour represents a different reference model for the inversion. The set
of reference models is that of Buldgen et al. (2022), Table 2. Right: averaging kernels for the localized
inversion of 16CygA using the (u, Y ) structural pairs (adapted from Buldgen et al. (2022)).

This points towards a quite stringent restriction of linear inversions, as they have a sort of “niche” where
their application might be useful. In practice, an unsatisfactory agreement between the observed and
modelled frequency separation ratios, r02 or r01, may indicate that carrying out inversions of the internal
structure can be useful, as shown in Bellinger et al. (2019). However, if all frequency separation ratios
are well reproduced, linear inversions of the internal structure might only confirm the validity of the
evolutionary models and the traces of additional processes such as macroscopic mixing of chemicals might
be looked for using frequency glitches (Monteiro and Thompson, 2005; Mazumdar et al., 2012, 2014;
Verma et al., 2014, 2017; Verma and Silva Aguirre, 2019; Verma et al., 2019) or depletion of light elements
such as Lithium and Beryllium (Deal et al., 2015).

Localised inversions have also been applied to post main-sequence Kepler targets such as in Kosovichev
and Kitiashvili (2020) and Bellinger et al. (2021). However, the validity of the variational equations in
the context of mixed modes still needs to be thoroughly investigated, as shown by Ong and Basu (2020)
and Ong et al. (2021), as coupling effects can cause the classical relation to break down for mixed modes,
implying that a non-linear formalism, taking properly into account the coupling using the full system of
oscillation equations might be required. In this context, non-linear inversions appear the most favourable
approach for extracting meaningful constraints from asteroseismic data.

5.3 Inversions of global indicators
As a result of the difficulties of carrying out full profile inversions, a compromise was struck by Reese

et al. (2012) who decided to focus on global quantities rather than attempt at localizing kernels. The
main goal of such “indicator” inversions is to focus on one single quantity at a time using the variational
expressions, trying to extract constraints on some well-chosen key quantities instead of detailed profiles.
The chosen quantities are determined based on the structural properties under investigation, such as the

Frontiers 16



Buldgen et al. Inversions of stellar structure

mean molecular weight gradient in the deep radiative layers, or the profile of an entropy proxy close to the
border of a convective zone.

A main difficulty of linear asteroseismic inversions is to find appropriate target functions for SOLA
inversions that can be easily fitted with a very limited number of frequencies. Consequently, Reese et al.
(2012) focused on a physical quantity well-known to be constrained by solar-like oscillations, the mean
density. Buldgen et al. (2015b,a, 2018) then focused on generalizing the formalism to other physical
quantities. The linear inversion of an indicator will be computed as follows

δE

E
=

N∑
i

ci
δνi
νi
, (25)

with E the indicator, ci the inversion coefficients determined by the SOLA method and νi the individual
frequencies.

The indicator is related to structural variables using an integral definition

E =

∫ R

0
f(r)g(s1)dr, (26)

and applying an eulerian linear perturbation to this equation leads to

δE

E
=

∫ R

0

s1f(r)

E

∂g(s1)

∂s1

δs1

s1
dr =

∫ R

0
TE

δs1

s1
dr, (27)

which defines the target function of the indicator TE which will be used in Eq. 19 for this specific inversion.

An additional term is introduced in the SOLA cost-function, denoted N in Eq. 19. For the case of
indicator inversion, it takes the following form

N =

[
k −

N∑
i

ci

]
, (28)

with k an integer that relates the scaling of the indicator with respect to mass. The argument is based on the

relation between an indicator and the frequencies, which go as
√

GM
R3 . Since the radius is essentially fixed

by the definition of the boundary of the integral variational relation, the scaling ends up being a scaling
with mass. The idea is to determine the properties of a homologous transformation that will lead to the
correct rescaling of the indicator value.

Essentially, if the indicator goes as E ∝ Mk/2, then a small perturbation of δE/E = ε will lead to a
small perturbation of the frequencies δν/ν = ε/k. In these conditions, it can be shown that a homologous
transformation with

∑
i ci = k leads to the correct rescaling of the indicator. Such inversions have been

called “unbiased” in Reese et al. (2012). In practice, this term acts as an additional regularization term for
the inversion to avoid high amplitudes of the inversion coefficients. As seen above, similar regularization
terms are introduced for localized inversions in the form of unimodularity constraints for the kernels.

This additional constraint has also been associated with simple “non-linear” generalizations of the
indicator inversions, following the approach of an iterative scaling of the model using homologous relations.
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Figure 7. Effect of surface corrections and model-dependency on mean density inversions of Kepler 93
(adapted from Bétrisey et al. (2022)) as a function of mass of the reference model. Red crosses show the
reference mean density values, olive green crosses show results without surface corrections, blue and grey
crosses show results using the Sonoi et al. (2015) and Ball and Gizon (2014) corrections in the SOLA cost
function, whereas brown crosses show results using coefficients extracted from MCMC modelling and
applied beforehand.

This iterative scaling can be shown to provide generalized formulations of Eq. 25 which will depend on the
value of the additional coefficient in the regularization term.

5.3.1 Mean density
Mean density inversions were defined in Reese et al. (2012), as a potential application of the SOLA

method to refine the determinations of stellar fundamental parameters from asteroseismic data. These
inversions have been further tested later on in Buldgen et al. (2015b) for solar like stars, and applied to
radial oscillations of post-main sequence stars in Buldgen et al. (2019b). The integral definition of the
stellar mean density is

ρ̄ =
3

4πR3

∫ R

0
4πr2ρdr. (29)

Hence, the target function is given by

Tρ̄(r) =
4πρr2

R3ρR
, (30)

with ρR = M
R3 . An illustration of the target function in the case of 16CygA is provided in the bottom right

panel of Fig 8. This function is usually fitted using structural kernels of the (ρ,Γ1) structural pair in the
variational equation.

Mean density inversions have been applied to a wide variety of targets, mostly on the main sequence. They
offer the advantage of providing an accurate determination of the mean density, beyond the capabilities of
asymptotic estimates such as the large frequency separation (Vandakurov, 1967) and being less sensitive to
surface effects than the latter.
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Due to the easily fitted target function, mean density inversions are one of the few that can be applied
with a very limited number of observed frequencies (See Reese et al., 2012; Buldgen et al., 2015b), without
recalibration of the trade-off parameters. These inversions are thus suitable for an “automated’ approach in
modelling pipelines. However, they suffer from an overestimated precision of the inversion. As a result
of the shape of the target function, the inversion coefficients are not very large and the amplification of
the uncertainties is small. While this may seem as an advantage, it also means that the error bars on the
determined mean density cannot be directly estimated using the SOLA method. In fact, the spread of results
observed when using multiple models and empirical surface corrections is often much larger than the 1σ
error bars provided by the SOLA method. This is illustrated in Fig. 7 for Kepler 93. In practice, mean
density inversions must then be applied to a given set of models and their precision is closer to 0.2% or
0.3% (See Bétrisey et al., 2022) rather than the claimed 0.1% or less computed from the propagation of the
observational uncertainties.

5.3.2 Acoustic radius
Acoustic radius inversions were defined in Buldgen et al. (2015b). The acoustic radius of a star is defined

as

τ =

∫ R

0

dr

c
, (31)

(32)

and is related to the large frequency separation in the asymptotic regime as ∆ν = 2/τ .

These inversions can be carried out with both the (c2, ρ) or the (ρ,Γ1) structural pair. As discussed above,
structural pairs involving either Γ1 or Y as secondary variable should be preferred to minimize naturally
the cross-term contribution. Therefore, for the (ρ,Γ1) structural pair, some manipulations are made using
the definition of the squared adiabatic sound speed, c2, and permutations of integrals to define the target
functions of the inversion. In this form, the acoustic radius inversion has a non-zero target function for the
cross-term contribution.

The target functions are defined as

Tτ,avg =
1

2cτ
− m(r)

r2
ρ

[∫ r

0

1

2cτP
dx

]
− 4πr2ρ

[∫ R

r
(
ρ

x2

∫ x

0

1

2cτP
dy)

]
dx, (33)

Tτ,cross =
−1

2cτ
, (34)

with ρ the local density, m the mass contained within the layer of radial position r, P the pressure, c
the adiabatic sound speed, and τ the acoustic radius. An illustration of the target functions for 16CygA
is illustrated the upper panels of Fig. 8. Moreover, the supplementary regularization constraints on the
inversion coefficients shows that their sum must be equal to −1.

Acoustic radius inversions show a similar behaviour to mean density inversions, as the target functions
are easily fitted by the kernels. They can thus be applied to a wide range of targets, but suffer from two
main drawbacks. First, just as the mean density inversion, the SOLA method overestimates the precision of
the inversion, meaning that the uncertainties derived from the propagation of the observational uncertainties
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cannot be trusted. Second, as a result of the behaviour of the target function, which results from the
definition of the acoustic radius, the inversion is more sensitive to surface effects and thus difficult to apply
to observed targets. This high sensitivity prohibits the use of acoustic radius inversions in practice and they
have only been applied to the 16Cyg binary system in Buldgen et al. (2016a). While Buldgen et al. (2015b)
concluded that the method was robust with respect to surface changes in the models and non-adiabatic
effects in the oscillation computations, further investigations are required to determine in more details the
robustness of these inversions using more sophisticated tests and comparisons.

5.3.3 Core condition indicators
Given the importance of constraining the core conditions of distant stars to determine reliable estimates

of their ages, much effort has been devoted to define appropriate core condition indicators. Three of them
were defined in recent years, with different observed targets in mind.

The first indicator was defined in Buldgen et al. (2015b) and based on the asymptotic expression of the
small frequency separation. The idea was to determine the quantity

t =

∫ R

0

1

r

dc

dr
dr, (35)

using the (c2, ρ) structural pair. As mentioned above, the use of this structural pair has been shown to
lead to higher amplitude of cross-term contributions. The target function for this indicator is defined by

Tt =
1
r
dc
dr∫ R

0
1
r
dc
drdr

. (36)

Due to the difficulty of fitting the target function of this indicator, Buldgen et al. (2015b) opted for a
modified version of the SOLA method, trying to fit the antiderivative of the target function rather than the
target function itself. This leads to a slight modification of the SOLA cost function with the first term being
written ∫ R

0

[∫ r

0
Tt(x)dx−

∫ r

0
Kavg(x)dx

]2

dr. (37)

This approach has been shown by Reese et al. (2012) and Buldgen et al. (2015b) to show reasonably
accurate results for both mean density and core condition indicator, at the expense of a lower stability since
oscillatory behaviours are allowed around the target function of the inversion. Regarding the additional
regularization term, the value of k for the sum of the inversion coefficients is shown to be 1.

An illustration of the target function of the t indicator is provided in the lower left panel of Fig 8. Buldgen
et al. (2015b) concluded that this indicator would be mostly well-suited for young low mass stars, and
published results only include tests on artificial data. It is worth noting that all indicators defined so far,
namely ρ̄, τ and t have their roots in the asymptotic relations of solar-like oscillations.

A second core condition indicator, denoted tu, was derived in Buldgen et al. (2015a), to allow us to
access to the core conditions of low-mass stars at later stages of core hydrogen burning. The definition of
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Figure 8. Target functions of various indicators as a function of normalized radius, taken for a model of
16CygA. Upper left and right: target functions for the acoustic radius inversion. Bottom left: target function
for the t core condition indicator. Bottom right: target function for the mean density.

this new quantity is

tu =

∫ R

0
f(r)

(
du

dr

)2

dr, (38)

with u = P/ρ, the squared isothermal sound speed and f(r) a weight function defined as

f(r) = r(r −R) exp

(
−7

r2

R

)
, (39)

The target function for this indicator is defined as

Ttu =
−2u

tu

d

dr

(
f(r)

du

dr

)
, (40)

and the inversion is carried out using either the (u, Y ) or the (u,Γ1) structural pair. Tests on artificial data
showed that both pairs led to a similar accuracy of the inversion. From a numerical point of view, the (u, Y )
pair leads to a lower cross-term that is more easily damped, whereas using the (u,Γ1) pair relies on the low
amplitude of the relative differences in Γ1 between the reference model and the target. An illustration of
the target function of the tu indicator is shown for 16CygA in the right panel of Fig 9. The value of k in Eq.
28 is of 4 for tu inversions.

The tu inversion has been applied to a few targets in Buldgen et al. (2016a,b, 2017a). In the case of
16Cyg, a recent re-study by Buldgen et al. (2022) concluded that the origin of the slight discrepancies were
not due to mismatches of the internal structure. As shown in the left panel of Fig. 9 illustrating the results

Frontiers 21



Buldgen et al. Inversions of stellar structure

0.81 0.82 0.83
2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1
-60

-40

-20

0

20

40

60

80

100

Figure 9. Left: tu inversion results as a function of mean density for 16CygA, using no surface correction
(blue) and the Sonoi et al. (2015) correction (green), orange crosses showing the reference values (adapted
from Buldgen et al. (2022)). Right: target function for the tu indicator for a model of 16CygA.

for 16CygB, a main drawback of the tu inversion is its very high amplification of the observational errors,
leading to a reduced significance of the inversion.

The last core condition indicator was defined in Buldgen et al. (2018) and is aimed at applications for
stars with convective cores such as F-type solar-like oscillators. The idea is to carry out an inversion related
to a proxy of the entropy of the stellar plasma, defined as S5/3 = P

ρ5/3
, which shows a plateau in convective

regions. The height of this plateau will be sensitive to the size of the convective core. The definition of the
indicator is

Score =

∫ R

0

g(r)

S5/3
dr, (41)

with

g(r) = r
(
α1 exp

(
−α2(

r

R
− α3)2

)
+ α4 exp

(
−α5(

r

R
− α6)

))
tanh

(
α7(1− r

R
)4
)
, (42)

with α1 = 16, α2 = 26, α3 = 0.06, α4 = α5 = 6.0, α6 = 0.07, and α7 = 50. The parameter values
might be varied depending on the observed star and as discussed in Buldgen et al. (2018). The intricate
formulation of the weight is an attempt at extracting at best the information of the entropy plateau of the
convective core, while keeping acceptable fits with a limited number of kernels of low degree modes. The
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target function of the inversion is defined in this case by

TScore =
−g(r)

ScoreS5/3
. (43)

The value of k in equation 28 is −2/3. The inversion will be carried out using the (S5/3,Γ1) or (S5/3, Y )
structural pair.

An illustration of the target function for an F-type star model with a convective core is provided in the
left panel of Fig 10, the extent of the core can be clearly seen from the plateau in the profile of 1/S̃5/3,

with S̃5/3 = GM1/3

R S5/3. This inversion has been applied to artificial data in Buldgen et al. (2018), and to
actual observed targets in Buldgen et al. (2017a), Salmon et al. (2021), and Buldgen et al. (2022), showing
in some cases significant differences with respect to the reference models.

Detailed studies of F-type stars have not yet been undertaken and require more care as a result of the
potential higher impact of surface effects. A generalization of the technique to the use of frequency
separation ratios instead of individual frequencies could perhaps alleviate the issue.
5.3.4 Envelope indicator

In addition to defining core conditions indicators, Buldgen et al. (2018) decided to attempt at providing
constraints on the entropy plateau in the convective envelope of solar-like stars. This appproach was partly
motivated by results in the solar case (Buldgen et al., 2017c), showing a significant variation of the height
of the entropy plateau in the solar convective zone for models built with different opacity tables.

The indicator was defined as follows

Senv =

∫ R

0
h(r)S5/3dr. (44)

with the weight function h(r) defined as

h(r) =

α1 exp
(
−α2(

r

R
− α3)2

)
+ α4 exp

(
−α5(

r

R
− α6)2

)
+

0.78

1 +
(

exp
(

(Rr − 1
α7

)/α8

))


× rα9 tanh

(
α10

(
1−

( r
R

)4
))

, (45)

with α1 = 30, α2 = 120, α3 = 0.31, α4 = 7.3, α5 = 26, α6 = 0.33, α7 = 1.7 α8 = 1.2, α9 = 1.5, and
α10 = 50. The target function of the inversion is given by

Tenv =
h(r)S5/3

Senv
. (46)

With these definitions, the value of k in the additional regularization term is given by 2/3. An illustration
of the target function, as well as the normalized variable S̃5/3 = GM1/3

R S5/3 is provide in right panel of Fig
10.

While the number of parameters in the definition of the weight function is high, only the α1, α2 and
α3 values are modified in practice. They drive the peak in the target function that can be used to extract
information in intermediate radiative regions or even regions close to the base of the convective envelope.
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Figure 10. Left: target function of the Score indicator and normalized inverse profile of S5/3 as a function
of normalized radius for a 1.07M� harboring a convective core. Right: target function of the Senv indicator
and normalized profile of S5/3 as a function of normalized radius for a solar model (adapted from Buldgen
et al. (2018)).

It is however extremely difficult to extract information on the entropy plateau of the convective envelope
for asteroseismic targets due to the absence of high and intermediate degree modes. Thus, the corrections
derived by the Senv indicator will be linked to a mixture of variations in the deep and intermediate radiative
layers.

This indicator has been tested on artificial data, showing promising results, and more recently on 16Cyg,
where it did not succeed in providing significant corrections to the models, but rather a confirmation of
their quality. This indicator seems to be better suited for low mass stars, for which the convective envelope
goes deeper and can be more easily probed with low degree modes using the variational expressions.

6 SURFACE INDEPENDENT NON-LINEAR INVERSIONS
As noted above, linear variational inversions show two main weaknesses. First, the simplified single
step correction provided by linear methods may not be sufficient to actually reproduce the data. Iterative
approaches (although used for solar models (Antia and Basu, 1994), but have yet to be successfully adapted
and applied to asteroseismic data. The adaptation would be quite difficult, especially with the RLS method
originally used that usually retains a strong linear trend due to the regularization term. In contrast, damping
too much the regularization leads to non-physical oscillatory behaviour of the solution, which is also
problematic. Switching from the RLS method to the SOLA method, as done for example in Buldgen et al.
(2020) for the Sun, would require additional interpolations and the convergence of the technique would
depend heavily on the behaviour of the averaging kernels as well as on the surface correction.

Indeed, the use of individual frequencies leads to a strong impact of surface effects on the inferred values,
meaning that the inversion will be intrisically limited by the accuracy of the empirical surface corrections.
Using relative differences in frequency separation ratios instead of individual frequencies may partially
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alleviate the issue, but it might lead to intrinsic non-linearity problems and frequency separation ratios
might still be, in some cases, significantly affected by activity effects (Thomas et al., 2021). Another
limitation of using frequency separation ratios is that the information of the stellar mean density is lost
through the scaling of the ratios by the large frequency separation.

In this context, asteroseismic inversions would ideally need to be able to intrisically and reliably
circumvent the surface effects of solar-like oscillations, within an efficient iterative scheme.

In the following Sections, we will present two approaches based on the phase relation of solar-like
oscillations that fulfill those two requirements. Another advantage of these methods is that, as they solve
the full fourth order system of oscillation equations, the issue of mode coupling arising in the case of mixed
modes observed in subgiants and red giants will not affect the results, unlike the variational equations (Ong
and Basu, 2020; Ong et al., 2021).

The approach chosen here is based on the fact that if ω is an eigenfrequency of the star, then it must
satisfy a phase equation (Vorontsov, 1998; Roxburgh and Vorontsov, 2000) in which the internal structure
can be described from inner phaseshifts and the outer layers from outer phaseshifts (see below). In such an
approach, the fitting is carried out by reconnecting partial wave solutions in the inner and outer layers at a
suitable point. The reconnexion point is chosen such that the oscillation will be almost vertical but still
deep enough so that surface effects do not impact the inner solution.

This method allows us to efficiently separate the contribution of the outer layers without the need for
additional empirical corrections. As the inner phase shift is independent of the surface layers and is the
constraint used to represent the internal structure, the inversion of the inner layers is essentially independent
of the surface effects.

The technique will be applied to HD177412A, the more massive component of the binary system HIP
93511, using the dataset derived by Appourchaux et al. (2015) from almost two years of continuous Kepler
observations.

6.1 Non-linear inversion using inner phaseshifts
The inversion technique presented in this Section subtracts the effect of the surface layers and seeks to

infer the structure of the inner layers. More specifically, we use as fitting condition that the inner phase
shifts of the solution of the oscillation equations of a model, using the observed frequencies, should
collapse to a function only of frequency in the outer layers of a star (Vorontsov, 1998, 2001; Roxburgh and
Vorontsov, 2003a; Roxburgh, 2015). In other words, we use the fact that the contribution of the outer layers
is a function only of frequency (although unknown) for low degree modes. Other surface layer independent
fitting procedures could equally be used, e.g. matching the ratio of small to large separations of the model
and observations, or matching phase differences (Roxburgh and Vorontsov, 2013; Roxburgh, 2015).

The inner phase shift δn,`(ν) is the departure of the solution of the oscillation equations from a harmonic
function and is defined by

ωψ

dψ/dt
= tan(ωτ − `π/2 + δ), where ψ(t) =

rP
′

(ρc)1/2
, ω = 2πν, (47)

calculated at some fractional radius xf in the outer layers, where τ =
∫ r

0 dr/c is the acoustic radius at the
radial position r, c the local sound speed and P

′
the Eulerian pressure perturbation.
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This provides a fitting criterion for the inversion of the form

αn,` ≡ π
νn,`
∆0

+ δn,` − π(n+ `/2) = α0(ν), (48)

where ∆0 is an estimate of the large frequency separation and α0(ν) is an unknown function only of
frequency and not of `, depicting the contribution of the surface layers to the eigenfrequency. The outer
phase shift, α0, is a parametrised function of ν, (here we used a sum of Nα Chebyshev polynomials) and
the associated coefficients are determined by a best fit to αn`. The fitting condition is then

χ2
df =

1

Nν −Nα
∑(

αn,` − α0

εn,`

)2

, (49)

where εn,` is the error in the inner phase shift, δn,`, obtained by propagating the error in the frequencies
(σn,`) through the calculation of the inner phaseshift. Nα is the number of coefficients in the polynomial
representation of the outer phase shift α0. It is worth noting that the value of ∆0 or the effects of a
misidentification of radial order values for the modes has no impact on the method, as they are absorbed in
the value of α0.

6.1.1 Inversion procedure
The acoustic structure of a model is determined by the profiles of the local density ρ(r), the local pressure

P (r) and the first adiabatic exponent Γ1(r). The density profile provides the mass distribution and the
pressure follows from hydrostatic support and a pressure surface value, denoted here Ps. The first adiabatic
exponent can be taken either from an initial trial model or as given a fixed value of 5/3 since the departure
from 5/3 remains very small in the stellar interior (except in massive stars). Errors in the value of the
surface pressure are unimportant as they have only a very small effect on the interior solution obtained
with the inversion.

The model can be parametrised in many ways. For example one can use the value of the stellar mass
and radius, and the local density ρ(r) on a radial mesh or, as we used here, with the values of d log ρ/dr at
a set of radial mesh points together with some interpolation and integration algorithm to reconstruct the
structure.

The starting point of the inversion is some initial trial (input) model. It can be in principle a very simplified
depiction of the structure such as a polytrope, but will be in practice some stellar model calculated with
some stellar evolution code. The parameters used in the representation of the model through its inner and
outer phaseshifts are iteratively modified to reduce the value of χ2

df , stopping when it reaches 1.0, meaning
that the internal structure as seen by the data is correctly reproduced with the parametric profile.

Fig 11 shows the results starting with an input model of HD177412A computed with the Liège evolution
code (Scuflaire et al., 2008), denoted here “LM” model. This model has a mass, M, of 1.3M�, a radius,
R, of 1.68R� and a central hydrogen abundance, Xc of 0.09. Its initial chemical composition is X0 =
0.7, Z0 = 0.02. This model was scaled to M = 1.25M�, R = 1.81R�, which are the values determined
from the seismic scaling relations (Brown et al., 1991; Kjeldsen and Bedding, 1995) and the observed
values of νmax and ∆. It should be noted that the initial model exhibited a convective core and that the
inversion has kept it in the final solution.

Fig 12 shows an inversion starting with an input STAROX model (Roxburgh, 2008) denoted here “IR”
with a mass of 1.1M�, a radius of 1.22R�, a central hydrogen abundance of 0.05 and an initial chemical
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Figure 11. Upper panels: Agreement in outer phase shift for the input “LM” model (left) and the inverted
model (right). Lower panels: Density (left) and squared adiabatic sound speed profiles (right) for inversion
result (black) and input model (red) for the so-called “LM” model.

composition of X0 = 0.7, Z0 = 0.02. This model was also rescaled to the mass and radius values provided
by the seismic scaling relations, namely M = 1.25M�, R = 1.81R�.

The models were represented by Nk values of d log ρ/dr on a discrete mesh, and inversions undertaken
with different values of Nk between 10 and 180. A downhill simplex method (Nelder and Mead, 1965) was
used to search for a minimum in χ2. The minimisation was made using the downhill simplex method with
the adjustable parameters being the density derivatives on the model mesh (but any other model parameters
would be suitable). The model was constructed from these model parameters - and the inner phase shift
calculated for the model using the observed frequencies as in Eq. 47 and chi2 as in Eq. 49. Various values
of the reconnexion point xf and different Γ1 profiles (constant or that of the input model) were tested to
see the impact on the results.

The results of the inversion using the iterative regularization procedure of Sect. 6.2 are also presented
in Fig. 12. In this case, the radius of the model was further adjusted to 1.742R� to improve the fit. The
solution of both the method illustrated here and that of Sect. 6.2 are very similar, if starting from the same
input model. However they differ widely from the results using the “LM” model instead of the “IR” one, as
the presence of the convective core is not confirmed in the latter case.
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Figure 12. Inversion result (black) and input model (red) for the so-called “IR” model. The profiles
resulting from the iterative regularization inversion of Sect. 6.2 are shown in blue for comparison.

6.1.2 Results
As is clear from the figures, different types of inverted models were obtained when starting from different

initial conditions: the solution is thus not unique and it appears that some feature of the initial model remain
after the inversion. This indicates a degree of degeneracy in the solutions. We can separate two families of
solutions:

1. Using the “LM” model as input, the solution of the inversion shows clear signatures of a convective
core. However, as shown in Fig. 11 it was already present in the initial model.

2. Using the “IR” model as input, the solution has no convective core but a steep hump in the sound speed
typical of the end of main sequence evolution of lower mass stars. Again, this feature was already
present in the reference model and the inversion has just enhanced it.

We conclude that seismic inversion alone is unable to distinguish between the solution with or without
a convective core. More precise data and higher frequency modes could help lift this degeneracy and
distinguish between the two families of solutions. This requires a detailed study of the dependence of the
inner phase shifts on the precision of both the model and of the frequencies, and possibly estimates of the
limits on the luminosity of the inverted model compared with the observed value.
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6.2 Iterative regularization
The basic approach to make asteroseismic inversions insensitive to the structure of the outermost stellar

layers and physics of the oscillations in these layers is here the same as in the previous section. Due to the
low values of the sound speed in the subsurface layers, the radial wavenumber of low-degree p-modes is
much larger than the horizontal wavenumber. Therefore the radial eigenfunctions are expected to depend
on the oscillation frequency ω only, but not on the degree `.

The major difference is in the regularization technique of the inversion. Here, we use a nested iterative
algorithm: inner and outer iterations. Inner iterations are performed with a limited number of linearized
descents using conjugate gradients; the number of inner iterations plays the role of regularization parameter.
The seismic model is taken as a new initial guess, and the optimization process is repeated in the outer
iterations. In stellar seismology, the algorithm was tested on artificial data in Roxburgh and Vorontsov
(2002, 2003a). It was applied to the inversion of observational frequencies of HD177412A (Appourchaux
et al., 2015), with the results being described later in this section.

The practical implementation of the technique derives largely from the helioseismic structural inversions
of Vorontsov (2001, 2002); Vorontsov et al. (2013). The hydrostatic model is described by cubic B-splines
for m(r)/r3 with knots distributed uniformly in r2, allowing a piecewise-analytic representation of the
pressure, density and density-gradient profiles. The number of splines is chosen high enough to reproduce
adequately regions of rapid spatial variation (e.g. the base of the convective envelope). In stellar inversions,
the radial profile of the adiabatic exponent Γ1(r) is taken from the initial model and remains unchanged.

The seismic model is truncated at some level r = rb below the photosphere, where wave propagation
is close to that of a pure sound wave, but not too deep for waves to remain nearly vertical (rb = 0.99R
in the inversion described below). For each mode in the data set, of frequency ω and degree `, we solve
the fourth-order system of the adiabatic oscillation equations by a shooting technique in the interval
0 ≤ r ≤ rb. From the two solutions regular at the center, we form the linear combination statisfying the
Laplace equation for gravity perturbations in the envelope. At the truncation boundary r = rb, we match
this numerical solution with the wave function ψp proportional to the Eulerian pressure perturbation (see
Vorontsov et al. (2013)), and measure the “phase propagation time” T`n defined as

ωT`n = π

(
n− nint +

1

2

)
+ arctan

dψp/dτ

ωψp

∣∣∣
r=rb

, (50)

with n the mode radial order, nint the number of nodes in the Eulerian pressure perturbation below the
truncation boundary, and τ the acoustic depth. T`n can be interpreted as the wave propagation time between
r = rb and the upper turning point. When the model fits the observational frequencies, the T`n-values of all
the observed modes fit an approximation

T`n = T1(ω), (51)

where T1(ω) is a slowly-varying function of frequency. We approximate this function by a polynomial.
The degree of the polynomial shall be significantly smaller than the number of modes in the observational
data set, but high enough to absorb variations coming from e.g. HeII ionization (which enter T1(ω) if this
region is not well described by the model). In the results presented below, the polynomial degree is 10.

The mismatch between the model and the data is measured by the merit function M defined as

M2 =
1

N

∑
`,n

[
T`n − T1(ω)

δT`n

]2

, (52)
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where N is number of modes in the data set, and uncertainties δT`n are calculated from the uncertainties of
the frequencies. Values of M close to 1.0 or below indicate that the model fits the oscillation frequencies
adequately.

The relations between small variations of the model parameters and variations of the phase of the wave
function ψp at the truncation boundary (the last term in Eq. 50), needed for the linearized descents, as well
as the relation between this phase variation and variation of frequency, needed for calculating δT`n, stem
from the linear perturbation analysis of Vorontsov et al. (2013), Appendix A.

A set of “elementary” model variations is then defined as partial sums of the B-splines describingm(r)/r3

starting from the stellar center (i.e. each elementary variation is defined as a truncated representation of
the equilibrium model). They are then normalized such as to ensure nearly equal relative variations of
equilibrium density. We thus arrive to an algebraic system

Ax = fδ, (53)

where the components of the x vector are the amplitudes of elementary variations, and the mismatch
between T`n and T1(ω) defines the components of fδ. The equations are then normalized to bring random
errors in the right-hand side to unit variance.

The amplitudes of elementary variations are controlled by a set of orthogonal polynomials of a discrete
(integer) variable (index i of xi). A choice of the polynomial set is known to be governed by a choice of
the weight function in their orthogonality relation. This function is specified by the Euclidean norms of
corresponding columns of matrix A (Strakhov and Vorontsov, 2001). This particular choice of the weight
function, which defines the polynomials, ensures that the response of the components of x to random
frequency errors is nearly uniform, at least in the first gradient descents. The upper degree of the polynomial
set has to be high enough to allow proper resolution of the inversion (set at 35 in the results below; the
exact choice is not important as regularization is performed by limiting the number of iterative descents,
not by constraining the functional space of allowed solutions). To ensure better stability of the inversion
in the outer layers, the polynomials were additionally apodized with a cosine bell function in the interval
between r = 0.7R and r = 0.9R and set to zero above.

An important ingredient of the seismic inversion when the stellar mass M and radius R are not well
known is the degeneracy of the oscillation frequencies with respect to an homology rescaling. When
represented in dimensionless variables, one particular seismic model describes a two-parametric family of
physical models, where the density profile ρ(r) scales as M/R3, the squared sound speed c2(r) scales as
M/R, the squared buoyancy frequency N2 and squared oscillation frequencies ω2 both scale as M/R3.
Thus an initial proxy model represented in dimensionless variables will describe a two-parametric family
of physical models which differ in M and R. We bring the measured frequencies to their dimensionless
values without imposing the stellar mass and radius: instead, we adjust M/R3 in this scaling such as to
achieve the best performance of the inversion (the best likelihood of the result after convergence). In this
way, the inversion provides a best-fit value for M/R3. The inverted dimentionless model now describes a
one-parametric family of physical models, all of which satisfy the input data. Each model in this family
can be rescaled to different values of M and R, keeping M/R3 unchanged. In this re-scaling, which does
not change the oscillation frequencies, ρ(r) and N2(r) remain unchanged, but c2(r) re-scales in proportion
to M2/3.

The results obtained with the observational p-mode frequencies of HD177412A and an evolved model
of 1.1M� star with a central hydrogen abundance of Xc = 0.05 (model “IR” of the previous section)
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taken as an initial guess are shown in Fig. 13. Descents to an adequate value of the merit function (below
1.0) were performed in 7 inner and 15 outer iterations. The steep decrease in the sound-speed towards
the center (panel a of Fig. 13), together with big density contrast (panel b of Fig. 13) indicate that the
star is at a very late stage of the main-sequence evolution. The resulting steep gradient in the molecular
weight is responsible for the sharp variation of the buoyancy frequency (panel c of Fig. 13). We note
that the prominent wiggles in the N2-curves below 0.1R are due to model discretisation (the cubic spline
for m(r)/r3 is continuous together with two derivatives, but provides N2(r) with discontinuities in its
gradient).

We do not see any signature of a convective core in the results of this inversion. Comparing with
results reported in the previous section, we have to admit that with the amount and quality of frequency
measurements available for HD177412A, the seismic inversion alone cannot answer the question of whether
or not the star has a convective core. Additional non-seismic constraints have to be invoked to address this
question.

7 CONCLUSION
This paper is an attempt at providing a brief review of the available inversion techniques for determining
the structure of solar-like oscillators. In general, seismic inversions can also involve the determination of
the internal structure of a star from evolutionary computations or static computations, which we briefly
discussed in Sect. 3. Most inversions wrongly refer today to the specific class of the linear methods based
on the variational integral relations between frequency perturbations and structural corrections. These
techniques have originated in helioseismology and are now being applied to the high-quality datasets
provided by space-based photometry missions.

These methods still allow us to provide interesting estimates of the corrections to be applied to the internal
structure of a given target, but intrinsic limitations such as the linearity of the integral relations and the
treatment of surface effects remain major weaknesses of these techniques. In practice, while the era of
space-based photometry missions has provided high quality data, it is still far from being enough to enable
a full scan of the internal structure of a distant star using, for example, the SOLA method described in
Sect. 5. As discussed in this section, the versatility in the definition of the target function of the SOLA
method allows us to compromise between determining global or local estimates of corrections, with global
estimates being sometimes more easy to derive from a limited dataset. Another good example of this
versatility being shown in Pijpers et al. (2021). Such approaches have been applied with success to the best
Kepler targets and will remain applicable to both TESS and PLATO data in the future, especially to very
precisely estimate the mean density of observed targets from a limited oscillation spectrum. Inversions of
indicators as well as localized inversions would remain only applicable for the best targets with very rich
oscillation spectra.

Further improvements of the linear methods include the development and application of inversions based
on relative frequency separation ratios. Indeed, Deheuvels et al. (2016) and Farnir et al. (2019) have shown
that they could be used to constrain the extent of convective cores from solar-like oscillations and such
inversions would likely alleviate the issue of the surface-effect dependency.

In addition to discussing linear variational inversion techniques, we also presented surface independent
non-linear inversions based on the phase shifts of solar-like oscillations. Such methods have proven to be
very efficient at determining the internal structure of solar-like oscillators for both artificial and real Kepler
datasets while suppressing efficiently the contribution of surface regions.
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In practice however, our results confirm that non-seismic data can play a key role in discriminating
between various families of inverted models. In this context, GAIA data will certainly be helpful in
determining precise luminosity values, provided that accurate spectroscopic parameters are available.
Interferometric radii determinations, when available, may also prove extremely helpful in this respect. It is
indeed no surprise that the results presented here are for bright components of binary system, which are
known to be prime testbeds of the theory of stellar structure and evolution.

An important point to note is that most of the inversions so far have been performed for main-sequence
solar-like oscillators exhibiting only pure pressure modes (with the exception of Kosovichev and Kitiashvili
(2020) and Bellinger et al. (2021)). The wealth of seismic information contained in mixed oscillation
modes thus still remains to be fully exploited. In this aspect, the non-linear inversions presented in Sect. 6
are a promising avenue to take directly into account the intrinsic non-linearity of the mixed modes and
to provide constraints on the internal stratification of subgiant and red-giant stars. Initial applications
of phase matching for mixed modes can be found in Roxburgh (2015) for artificial data and a detailed
characterization using evolutionary models of the stratification of a subgiant can be found in Noll et al.
(2021), studying its consequence for core overshooting in the main sequence. These works provide
benchmark approaches to further constrain the internal structure of evolved stars, for which insights on
the core stratification will play a key role in improving our understanding of the missing efficient angular
momentum transport at play in these stages.
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Deheuvels, S., Doğan, G., Goupil, M. J., Appourchaux, T., Benomar, O., Bruntt, H., et al. (2014). Seismic
constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young
red giants. A&Ap 564, A27. doi:10.1051/0004-6361/201322779

di Mauro, M. P. (2004). Theoretical Aspects of Asteroseismology: Small Steps Towards a Golden Future.
In SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, ed. D. Danesy. vol. 559 of ESA
Special Publication, 186

Di Mauro, M. P. (2016). A review on Asteroseismology. In Frontier Research in Astrophysics II

Frontiers 35



Buldgen et al. Inversions of stellar structure

(FRAPWS2016). 29
Di Mauro, M. P., Ventura, R., Corsaro, E., and Lustosa De Moura, B. (2018). The Rotational Shear Layer

inside the Early Red-giant Star KIC 4448777. ApJ 862, 9. doi:10.3847/1538-4357/aac7c4
Dziembowski, W. A., Pamyatnykh, A. A., and Sienkiewicz, R. (1990). Solar model from helioseismology

and the neutrino flux problem. MNRAS 244, 542–550
Elliott, J. R. (1996). Equation of state in the solar convection zone and the implications of helioseismology.

MNRAS 280, 1244–1256. doi:10.1093/mnras/280.4.1244
Elliott, J. R. and Kosovichev, A. G. (1998). The Adiabatic Exponent in the Solar Core. ApJL 500,

L199–L202. doi:10.1086/311417
Farnir, M., Dupret, M. A., Buldgen, G., Salmon, S. J. A. J., Noels, A., Pinçon, C., et al. (2020). Thorough
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Figure 13. Result of structural inversion for HD177412A: the sound speed (a), density (b) and buoyancy
frequency (c). Dashed lines show a (re-scaled) model taken as an initial guess; solid lines display the
inverted result. Dotted lines are the results obtained when the measured frequencies were added with
Gaussian noise, of variance corresponding to the reported uncertainties, in 10 realizations, to address the
sensitivity of the inversion to random errors in the input data. The nearly-optimal mean density of the
model is 0.293g/cm3. The c2-scale corresponds to a model of the original M = 1.1M� mass but a bigger
R = 1.74R� radius.
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